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Abstract

Shell and tube heat exchangers (STHEs) are critical to energy conversion efficiency of

power plants. Eddy current examination is a way to evaluate working conditions of

these tubes. However, the current testing apparatus requires human to manually insert

an eddy current testing (ECT) probe into and extract it out of individual tubes, and

meanwhile monitor measurement results for diagnosis. It is a time‐consuming and labor‐

intensive procedure even for an experienced technician. To tackle this challenge, in this

study, we developed a robot enabled ECT system for autonomous inspection of STHEs.

The robotic platform employs Mecanum wheeled chassis for high mobility, machine

vision to locate tube bundle and tube inlets, a rotational Cartesian mechanism to

operate at planes with all possible inclinations, and a task‐specific mechanism for ECT

probe delivery. Machine vision locates tube bundle and tube inlets by an April tag

detection algorithm and a Circle HoughTransform algorithm, respectively. Assisted by a

guiding cone, the ECT probe is continuously fed into the tubes with a fill factor of 0.819.

During this process, the eddy current data are automatically collected and real‐time

analyzed by convolutional neural networks, showing accuracy of nearly 100% for

identifying defective and nondefective tubes and 85% for four types of defective tubes

and nondefective tubes.
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1 | INTRODUCTION

By 2050, there will be a 30% increase in global energy consumption.

Energy generation in the form of electricity is expected to be

doubled. Although clean and renewable energy has an increasing

share (Gritsevskyi, 2016; Melani et al., 2019), in the next few decades

at least, electricity generated by burning fossil fuels in power plants

will still be dominant in modern society (Richardson, 2014; Speight,

2021). Making power plants highly efficient is still imperative. Regular

maintenance of key components such as heat exchangers for energy

transfer between liquid of different temperatures is essential to this

goal since the energy conversion efficiency is greatly affected if they

are subjected to structural discontinuities, such as pitting, cracking

and wall loss (Richardson, 2014; Speight, 2021). Eddy current testing

(ECT) is a mainstream nondestructive examination (NDE) technique

to inspect the heat exchanger tube (Sadek, 2006). Visual examination

can identify large defects (Hayashi et al., 2014; Xiong et al., 2019;

Yamamoto et al., 2014), while ECT based NDE is more suitable for

small internal or exterior defects (García‐Martín et al., 2011).

Among various types of heat exchangers used in the power

plants, shell and tube heat exchangers (STHEs) are the most common

one with 65% market share globally (Smith, 2005). They are usually

arranged in a parallel and closely packed form (Figure 1a). Insertion

and extraction of an ECT probe into and out of these individual tubes
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and meanwhile monitoring measurement results for real‐time

decision making is a time‐consuming and labor‐intensive procedure

even for an experienced technician. In addition, high reliance on

human workers to manipulate the inspecting instrument may enlarge

the operational inconsistency, which may lead to false diagnosis due

to increased variance of collected ECT data (Udpa et al., 2004). Not

only this restricts the efficiency of maintenance, but also limits the

detection accuracy (Sadek, 2006). Therefore, it is imperative to come

up with a solution that minimizes variance in both instrument

manipulation and data analysis.

In this article, we present a robot‐enabled ECT system for

autonomous inspection of STHEs (Figure 1b). The robot uses machine

vision to perceive the surroundings and locate the working area.

Different mechanisms were developed for different types of tasks.

Mecanum wheel chassis was designed for high mobility. A Cartesian

mechanism with close‐loop linear actuators was employed for precise

motion. To real‐time perform ECT data analysis and decision making,

deep learning models were developed. Main contributions of this

study include: (1) a cost‐effective autonomous robotic platform with

seven degrees of freedom (DOF) for autonomous testing of STHEs;

(2) development of accurate deep learning models for ECT data

analysis based on limited data.

2 | RELATED WORKS

Robots have been widely used in modern industries for various

applications. They are well suited for repetitive tasks, such as

welding, assembling, and inspection. They are capable of working in

environments that are not friendly to humans (Djuric et al., 2016).

Additionally, robots yield low and constant operational errors

(Engelberger, 2012). The development of robots for the pipe

inspection has been reported. For the pipes made of ferromagnetic

materials, Schoeneich et al. developed robots with magnetic wheels

to make them stay on the pipe wall (Schoeneich et al., 2010). They

can perform visual inspection along ferromagnetic tubes with

diameters of ≥25mm. Due to the train‐like design, the robots can

pass the curved pipes with a maximum curvature of 150mm. But

occurrence of slippage fails to match displacement of the robots with

the sensed one. Fischer et al. demonstrated magneBike for inspecting

ferromagnetic components, which can deal with convex edges and

climb vertical wall (Fischer et al., 2009). For the pipes made of

nonferromagnetic materials, the robots adopt actuation wheels to

apply pressure to the wall through a compliant mechanism for

locomotion (Chang et al., 2015; Kwon & Yi, 2012; Kwon et al., 2010;

Qu et al., 2018). Nevertheless, these robots are limited to function

inside relatively large tubes and are powerless when dealing with

parallelly and closely packed STHEs. Furthermore, they mainly

examine the pipes through visual sensors and hence would omit

invisible defects.

Some companies, such as Waygate, developed robots that can

clean outer surface of boiler wall and detect flaws by an ultrasound

sensor. Westinghouse corporation launched a task‐specific robot,

Pegasys, for STHEs inspection. It can walk on the cross‐section of the

STHE bundles through pneumatic grippers and is capable of

delivering the testing probes into individual tubes. B&W NE/Intech

developed their Spyder serial robots for steam generator inspection.

A PRIMA system from BWX Technologies is a manipulator designed

to operate multiple modular tools for tube inspection. However, all

these commercial robots need to be installed at the working area in

advance and have no capability of analyzing data for real‐time

decision making. Therefore, an integrated robotic system that can

autonomously deploy probing sensors into pipes with various

dimensions, actuate high precision travelling displacement, and real‐

time process acquired data for STHE inspection is highly desired.

For ECT data analysis, many researchers have recently used deep

learning methods. Miao et al. demonstrated a convolutional neural

network (CNN) to identify defects of narrow lap welds. The accuracy

F IGURE 1 Schematic showing a human worker performing shell and tube heat exchanger inspection using ECT. ECT, eddy current testing.
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was reported to be 96.94% for five classes (Miao et al., 2019). Deng

et al. applied a CNN model to analyze image ECT data of titanium

plates with defects of different geometries. It delivered a classifica-

tion accuracy of 95.68% even with the presence of noise (Deng et al.,

2020). However, significant amount of data was needed for the

model training. As it is costly to obtain ECT data from objects with

varied materials and dimensions, it is hence necessary to develop a

new method that can be trained using much less data and show

better robustness. In the realm of image analysis, researchers

improved the generalization and robustness of models through data

augmentation methods, such as adjusting brightness, random erasing,

rotation, and so on (Park et al., 2019; Shorten & Khoshgoftaar, 2019).

3 | SYSTEM DESIGN AND
CONSTRUCTION

The proposed autonomous robot should be able to perform three

tasks. The first one is to locate the tube bundle and determine tube

inlet position. The second one is to actuate motion toward target

followed by precisely manipulating the ECT probe into the STHEs.

Finally, it should be able to determine the tube status by performing

real‐time data analysis. To realize these tasks, environmental

perception unit, mechanical actuators, control system, and deep

learning model were developed and integrated.

3.1 | Mechanical system design and construction

The mechanical system consists of a chassis of high‐mobility and

rotational Cartesian mechanism (Figure 2a). The chassis is controlled by

an Arduino Mega 2560 and the rotational Cartesian mechanism receives

command from MKS GEN V1.4 microcontroller. The electronic

components of the system are described in Figure 2b. The constructed

robot has seven DOF as illustrated in Figure 2c. Three DOFs are

attributed to the chassis using four Ilon's Mecanum wheels (Ilon, 1975)

for locomotion, whose control algorithm was developed based on the

kinematic model developed by Taheri et al. (2015). The remaining four

DOFs are attributed to the rotational Cartesian mechanism, which uses

a rotation actuator to adjust the inclination of a dual‐direction dual‐rail

linear system that holds cameras, the ECT probe, and the probe delivery

system. The rotation actuator with chassis can coaxially align the ECT

probe with the tube inlets.

One of the design goals of the system is to deliver the ECT probe

into the tubes at a constant feed rate. To achieve this goal, a

mechanism similar to the FDM 3D printer filament delivery system

was initially tried. It clamps the probe through a passive groove wheel

and an actuation gear. The passive wheel was placed on a tensioning

lever to induce enough friction between the probe cable and the

actuation gear (Figure 2c‐v, Figure 3a). However, the probe cable was

still too slippery during the movement. Occurrence of slippage

resulted in discontinuous probe delivery. To solve this issue, a rack

and pinion typed delivery mechanism was eventually developed.

Three racks, each of which has three gears, are arranged as

120 degrees apart and are tightly wrapped around the probe cable.

The active gear on the top drives motion of the cable while the two

passive ones help to hold the probe cable. The rack is 170mm in

length and longer than the test tube with a length of 90mm

(Figure 3b,c). This system can deliver the probe at a speed of

20mm/s without slippage so that locations of defects in the tube

detected from the abnormal signal from the collected ECT data can

be precisely identified. A guiding cone was installed in the front of the

probe to improve the insertion success rate. Demonstration of the

rotational Cartesian mechanism and probe delivery system is shown

in Video S1.

3.2 | ECT data acquisition unit

A Reddy AC & Tubing ECT unit (Eddify Technologies) and a bobbin

probe made by Eddyfi company were used to acquire the ECT data

(Figure S1a,b). With a microcontroller sending transistor‐to‐transistor

logic (TTL) signals to this instrument through different I/O pins

(Figure S1), the instrument can perform a data acquisition task

automatically. The corresponding TTL signals trigger actions of start

acquisition, stop acquisition, and data saving. The data are automati-

cally saved and wirelessly transmitted to an onboard PC through a

local WIFI network. Then they are input into a pre‐trained deep

learning model for classification. Demonstration of probe delivery

and data acquisition subsystems is shown in Video S2.

3.3 | Machine vision

In robotic research, some tasks cannot be fulfilled without acquiring

positions and orientations of a certain object. For many target

acquisition systems (Arad et al., 2020; Birrell et al., 2020; Williams

et al., 2020; Xiong et al., 2020), their end effectors must be aligned with

the target through a vision‐based approach. However, they do not

require detection and control of the relative orientations between the

target and the end effectors. In contrast, in our mobile robotic platform,

to achieve successful probe insertion into the tube inlets, the relative

orientations of the tube bundle plane to the probe must be accurately

detected and controlled. The plane orientation estimation can be done

with assistance of a stereo camera (Se & Brady, 2002). By an image

processing algorithm, the obtained 2D images can be used to construct

3D depth images to estimate the ground planes (Cherian et al., 2009). In

our work, two machine vision cameras were integrated into the system.

The first one is the OpenMV camera, which has two functions: object

detection of tube bundles and estimation of plane orientations. For

testing purposes, a tube bundle mockup made of 90 tubes was used

(Figure 4a). These copper tubes (from Mcmaster–Carr) with a length of

90mm, outer and inner diameters of 19.05 and 16.57mm were

mounted onto a perforated plate with a dimension of 315mm×

286mm. The tube dimension, spacing, and a pitch ratio of 1.43 were all

selected based on an STHE design standard (T.E.M. Association, 1952).
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By Equation (1), the fill factor of the current setting is 0.819. Then they

are input into a pre‐trained deep learning model for classification.

Demonstration of probe delivery and data acquisition subsystems is

shown in Video S2.







η

D

D
= ,

i

0
2

(1)

where η is the fill factor, D0 is the outer diameter of probe, and Di is

the inner diameter of tube.

To assist the object detection and plane estimation, a tube‐bundle‐

fixed fiducial marker, called an April Tag, was attached to the plate of the

tube bundle mockup (Figure 4b). First, the OpenMV camera can locate

the tube bundle by identifying the fiducial marker (Olson, 2011; J. Wang

& Olson, 2016). Then the camera performs the second function:

estimation of the plane orientations. The purpose of doing the plane

orientation estimation is to ensure that the ECT probe is well aligned with

the tubes for smooth delivery. Based on the position and orientation of

the fiducial maker in the image, the camera can return two translational

and two orientational positions of the maker‐attached tube bundle.

F IGURE 2 System layout and distribution of seven DOFs. (a) A prototype of a fabricated autonomous robotic platform. (b) Photographs of
key electronic components: (b‐i) MKS gen V1.4 controller; (b‐ii) DM542T stepper motor driver; (b‐iii) a Leadshine CS‐M22313 stepper motor;
(b‐iv) NEMA 17 stepper motor; (b‐v) a DC motor; (b‐vi) Saber tooth DC motor driver; (b‐vii) ASME‐MXB high torque servo motor; (b‐viii) Arduino
Mega 2560; (b‐ix) OpenMV H7; (b‐x) ESP8266; (b‐xi) HD camera; (b‐xii) onboard PC; (b‐xiii) Reddy AC and Tubing ECT instrument. (c) (c‐i) Three
DOFs from chassis locomotion; (c‐ii) One DOF from rotational motion of the rotational Cartesian mechanism; (c‐iii, c‐iv) Two DOFs from the
linear motion of the rotational Cartesian mechanism; (c‐v) 1 DOF from a probe delivery system. DOF, degree of freedom.
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A fiducial marker in the center of the image without distortion will yield

zero translation and orientation (Olson, 2011; J. Wang &Olson, 2016).Δx

and Δy are translational displacements along the x and y axes,

respectively, while α and β are the orientational angles about the z and

y axes, respectively (Figure 4c). Δx and Δy are used to align the chassis of

the robot to the tube bundle, while α and β are used to estimate the

relative angles of the ECT probe to the plate where the tubes are held.

These four parameters are dynamically collected and fed to four

respective PID controllers as the input to control the actuators to

reposition the robot. The goal of the control is to make Δx, Δy, α and β

zero. As a result, the fiducial marker in the center of the image should not

be distorted. Note that, the four parameters Δx, Δy, α, and β are sufficient

for the robot to coaxially align the delivery probe with the tube inlets.

The performance of the four PID controllers was tested. Figure 4d

shows the response curves of Δx, Δy, α and β. They show that within a

few seconds the PID controllers actuate the robot to the target position,

although there exist some lags for Δx, Δy and α, which may be due to

relative sliding between test ground and Mecanum wheels. This

hypothesis is validated by the performance of the controller that

controls a rotation actuator to adjust β, which shows much less lag.

These results indicate the feasibility of using a fiducial marker to obtain

the four repositioning parameters for navigating and aligning the robot.

Fiducial marker‐assisted robot navigation is demonstrated in Video S3.

The second machine vision camera is an Aluratek 1080HD

camera, which was used to acquire the center point coordinates of

the individual tube inlets. It was placed above the probe delivery

channel with an installation angle of 19° for better target capturing

(Figure 5a). Due to this installation angle, the tube bundle image is

distorted if not corrected. As a result, the image would not show

equally spaced tube inlet center coordinates as they are supposed to

be. To solve this issue, perspective transformation was applied to the

raw image for correction until the circle detection algorithm can

feedback circle center coordinates that were equally spaced in both

horizontal and vertical directions (Figure 5b). After image correction,

a Circle Hough Transformation (CHT) algorithm for detecting circles

was employed to rapidly obtain the tube inlet center coordinates of

the individual tube inlet. In the CHT algorithm, Equation (2) was used

to describe the circle in the original image space, the circle has a

center (a, b) and radius r. As tubes used for simulation are of the same

dimension, the radius is therefore a constant.

x a y b r( − ) + ( − ) =i i
2 2 2 (2)

Each point on the circle edge in image space corresponds to a

circle of center (xi, yi) and radius r in the parameter space. These

circles can be expressed by Equation (3). If a circle in the image space

is correctly detected, corresponding circles in the parameter space

will intersect at a certain (a, b).

a x b y r( − ) + ( − ) = .i i
2 2 2 (3)

The accumulator matrix used for tracking intersection points can

be written as A(a, b), which contains all points of circle edge in the

parameter space. If an intersection is detected at (a, b), the element A

(a, b) will be added by 1, Equation (4). In this way, the point (a, b)

where most circles intersect will have the highest vote. The local

maximum leads to the center of the detected circle.

A a b A a b( , ) = ( , ) + 1. (4)

F IGURE 3 A probe delivery system. (a) CAD drawing of an initial design of a probe delivery mechanism. (b) CAD drawing of improved design
of a probe delivery system. (c) CAD drawing of rack assembly and schematic showing probe delivery principle. CAD, computer‐aided design.
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Correction and detection of a sample perforated plate and tube

bundle mockup are illustrated in Figure 5b‐c. The raw input was first

undistorted by perspective transformation (Figure 5b‐ii), which is then

followed by edge detection (Figure 5b‐iii). The edge detection finds

boundaries of objects in an image by a color gradient. Pixels on the

boundary are then substituted into the CHT algorithm. Results of CHT

over the testing plate are illustrated in Figure 5b‐iv, where the

intersections of red circles are the centers of circles. Figure 5c illustrates

the application of perspective transformation and CHT in detecting the

tube bundle mockup. Figure 5c‐iii shows the center coordinates of

circles in the image. The process of obtaining coordinates of the tube

inlet centers is shown inVideo S4. The OpenMV module communicates

directly with Arduino Mega 2560 that controls the chassis and the

rotation actuator of the Cartesian mechanism. With these obtained

coordinates and angles of α and β, the Cartesian mechanism can align

the probe to make the probe coaxial to the tubes for smooth insertion.

3.4 | Task sequence

The developed autonomous robot operates three sequential tasks of

target localization and locomotion, ECT probe deployment, and data

acquisition and analysis by three integrated sub‐systems (Figure 6).

First, machine vision (an OpenMV camera) can recognize the tube

bundle and navigate the robot to the target until the target is in the

center of the image and the distance threshold is met. By the method

described in Section 3.3, Δx, Δy, α and β are estimated and serve as

the input of the controller that actuates the chassis and rotational

Cartesian mechanism to position the robot. The goal is to make all of

them zero so that the probe is expected to be aligned coaxially with

the tubes of interest.

After finishing the first task, the HD USB camera can identify the

relative coordinates of individual tube inlets by the method as

described in Section 3.3. The coordinates are then mapped and

F IGURE 4 (a) A schematic showing a tube bundle mockup and the tube arrangement. (b) An OpenMV camera used to detect the tube
bundle, a fiducial marker, and detection result. (c) Schematic showing Δx, Δy, α and β as well as the principle of obtaining them by machine vision.
(d) Response curves of (d‐i) Δx, (d‐ii) Δy, (d‐iii) α, and (d‐iv) β controllers.
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served as the input of the controller that controls the motion of the

ECT probe holder in the y and z axes (Videos S3 and S4). Accurate

coordinates allow the probe to be inserted smoothly into tube inlets.

During the probe delivery in Task 3, a TTL signal is sent to the ECT

instrument to trigger start/stop data acquisition and data saving

actions. Simultaneously, the collected ECT data are wirelessly sent to

the onboard computer through local WIFI network for data analysis

by a deep learning algorithm that can classify tube status.

F IGURE 5 (a) A photograph of HD USB camera for acquiring the tube inlet coordinates and a scheme showing location of the camera and an
installation angle. (b) Images before and after perspective transformation and images showing edge detection and Circle Hough transformation
mechanism. (c) Images showing a correction process of obtaining coordinates of the tube inlet centers.

F IGURE 6 Workflow showing task sequence of the robot for autonomous shell and tube heat exchanger inspection.
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This workflow to perform the three aforementioned tasks is repeated

until all the tubes are detected. Demonstration of the whole task

sequence in a simulated test environment is shown in Video S5.

4 | RESULTS AND DISCUSSION

4.1 | Positioning accuracy test

To evaluate the accuracy of the probe delivery mechanism, a simulated

case was conducted. The probe was replaced by a laser pointer, which

simulates the process of probe delivery by shooting the laser to the

target as illustrated in Figure 7a. A simulated tube inlet with a diameter

of 16.56mm on a plate was placed in front of the robot. The robot first

detected the inlet and then acquired the center coordinate of the inlet.

Then the robot was navigated to the corresponding position and turned

on the laser (Figure 7b). A camera placed behind the plate recorded the

locations of the laser spot. Inspired by the probe and drogue method

used in the in‐flight refueling task (Bolien, 2018), which uses a funnel‐

shaped guiding basket to aid the docking process between the probe

and hoses, we use a guiding cone to reduce the difficulty of probe

insertion into the tube inlets. Its geometry is shown in Figure 7c. A

successful insertion is guaranteed if the tip of the guiding cone lands

inside the tube inlet as shown in Figure S2. Using Equation (S1), a

tolerance region can be estimated as shown in Figure 7d. The test was

repeated for 25 times. The testing results of the positioning accuracy for

the tube inlet detection camera is shown in Figure 7e,f. Statistical

analysis on the positioning data shown in Figure 7f shows that there is

an average distance of 0.4147mm and standard deviation of

0.2927mm away from the center of the tubes. This positioning

accuracy is high enough to actuate successful insertion of the probe

into all the detected tubes, which are packed to form a plane with a

dimension of 286mm×314.6mm.

4.2 | A deep learning algorithm for ECT data
analysis

To realize full autonomy, automatic analysis of the ECT data for detection

of the tube defects is essential. To achieve the goal, a CNNwas utilized in

F IGURE 7 Evaluation of positioning accuracy of the Cartesian mechanism. (a) Schematic of an experiment setup for accuracy evaluation. (b)
Images of laser spots when the laser is switched off and on. (c) Geometry of a probe guide cone placed in front of the eddy current testing probe.
(d) Schematic showing tolerance of successful probe insertion. (e) Locations of 25 repeated laser spots in the tube inlet. (f) Distribution of the 25
laser spots in the tolerance region.
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our system. To train the model, 10 high pressure copper tube sections for

drinking water with four statuses were used for data collection. The four

classes of status include no defect, wall‐loss, through holes and outer

holes of different sizes. These tubes and the corresponding ECT spectra

of their defective areas are illustrated in Figure 8a. The blue and red lines

are real and imaginary components of original ECT data, respectively. To

obtain a robust deep learning model, ECT spectra data from different

types of defective tubes are obtained. First, ECT data from 10 tubes

F IGURE 8 (a) Four types of tubes used for data collection and segmented eddy current testing spectra of defective areas. (b) CNN
architecture and hyper parameters. (c) ROC and PR curves of a CNN model trained by data collected from nondefective and defective tubes. (d)
ROC and PR curves of a CNN model trained by data from nondefective tubes and tubes with outer hole, through hole, and wall loss. CNN,
convolutional neural network; PR, precision‐recall; ROC, receiver operating characteristic.
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showing four types of defective status (normal, outer hole, through hole,

and wall loss) were collected and segmented. Second, four sets of

segmented data were augmented through phase‐shifting and noise

addition as shown in our previously reported work (H. Wang et al., 2020).

By these methods, these data were augmented to 40,000 spectra. Finally,

39,600 of them were used for model training and 400 of them were used

for model validation. Meanwhile, additional 20 tubes with these four

types of defective status were used for testing. The CNN architecture

and hyperparameters of the finally trained model are illustrated in

Figure 8b. Input of the model is the real and imaginary parts of the ECT

data. Dimension of the input matrices is 2500×2. The data were first

plugged into two sets of convolutional layer and max pooling layer for

feature extraction, which is then followed by a flatten layer together with

a dropout layer that keeps 70% of the data randomly. The flatten layer

bridges the convolutional layers and a subsequent fully connected layer.

The output of the CNN model is the probability of the four defect

categories that best match the input data. After the successful training,

our model showed a training accuracy of 99% and a testing accuracy of

85% for classifying these four categories. Recently, Zhu et al. reported a

CNN model that classified only defective and nondefective two classes

with accuracy of 99% from the ECT data (Zhu et al., 2019). Our model

was trained with very limited data, while the model can classify four

classes with a comparable accuracy. If the data were divided into two

groups: defective and nondefective tubes, the trained model showed a

testing accuracy of almost 100%.

Receiver operating characteristic (ROC) and precision‐recall (PR)

curves were employed as evaluation metrics of the model. ROC curve is

an evaluation metric of classification problems under different

thresholds. It illustrates the extent to which the model can distinguish

between different categories. Deviation of the ROC curve from a

random guess baseline to the upper left corner indicates that a machine

learning model has achieved high prediction precision. AUC is the area

under a ROC curve, which is equal to the probability that the classifier

randomly ranks selected positive samples higher than randomly selected

negative samples. Positive and negative samples are two types of data in

binary classification. True positive rate and false positive rate are

illustrated in Figure 8c–i, d‐i. As the ROC curve is close to the upper left

corner and AUC value equals to 1, it can be concluded that the model of

binary classifier is more accurate than the quaternary classifier. The PR

curve shows the ratio of the true positive number of correct predictions

to the total positive number of predictions, which is presented in

Figure 8c‐ii, d‐ii. Precision is the proportion between true positives and

total positives. The recall rate measures whether the model can

correctly identify true positives. It is desired to have a model that has

both high precision and high recall. The precision value at recall of 1.0 is

equal to 1, indicating high true positives from the binary classifier.

4.3 | Demonstration of autonomous operation

The fully integrated system was tested in a simulated environment.

Demonstration of the autonomous process is shown in Video S5. In the

test, tubes with defects (80 tubes) and without defects (20 tubes) were

randomly mounted into a bundle. Figure 9a shows that the robot is

delivering the ECT probe into a tube of interest. Use of a guiding cone

enables smooth insertion. The probe delivery system also ensures

continuous and constant delivery. Figure 9b‐i shows a representative

example tube that was detected to have a wall‐loss defect after a

successful probe delivery. After each probe deployment, the ECT data

of the tube is first acquired and stored in the ECT instrument (Figure 9b‐

ii), and then is wirelessly transmitted to a computer for classification by

the developed CNN models. In this process, the computer displays the

status of data acquisition process, then the plot of raw ECT spectra.

Simultaneously, the algorithm segments the data from the defective

area into 2500 × 2 matrices, which are fed into the pre‐trained CNN

models for classification. In this example, both binary and quaternary

classifiers show ~100% confidence in identifying it as a tube with wall‐

loss defect (Figure 9b‐iii).

4.4 | Discussion

In this study, the robot meets the goal of autonomously inspecting

STHEs. Compared with commercial robots, our robot requires less human

intervention in terms of data analysis and decision‐making. The robot can

navigate itself in front of the tubes, and then coaxially align the probe

delivery channel to the inlets of the tubes. Subsequently, the ECT probe

was deployed along the tube for data collection while performing data

analysis. Another contribution is that with the aid of data augmentation,

we have developed a deep learning model with a high classification

accuracy and high robustness. However, in other reported work, without

using sufficient data, their models would suffer from the problems of

overfitting or large variance. The success rate of inserting the probe into

the tubes is mainly limited by positioning accuracy of the robot and tube

inlet coordinate detection. The positioning and chassis locomotion are

largely affected by the fiducial marker detection system. The resolution of

the target detection camera, grip between Mecanum wheels and the

ground, as well as stability of the rotation actuator, contribute to

the positioning error of the robot. The maximum supported resolution of

the tube bundle detection camera is 640×480. We used 160×120 to

reduce the data collection load and accelerate the computation. Its

detection accuracy is illustrated in Figure S3. Correspondingly, the mean

absolute percentage error ranges from 1.49% to 34.22%. A servo motor

with a higher torque for the rotation actuator can increase stability of the

system. The accuracy of the tube inlet coordinate largely determines if

the probe can be successfully inserted into a tube as it is only 1.57mm

larger than the probe outer diameter. This accuracy is affected by the

light condition and camera resolution. A guide cone that is installed in the

front of the probe can partially lower the system error. Without slippage,

the rate of successful insertion into the detected tubes is 100%. The

probe delivery speed into a tube with a length of 90mm was set to

20mm/s, leading to the execution time of 18 s per probe insertion.

Other improvements can be made to make the system more

robust in future work. (1) One expected issue in the real field

environment is the wheel slip. To increase the grip between the

mobile platform and the ground, a tracked chassis can be used. (2) To
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deal with uneven ground and varying light conditions, active

suspension with a light adaptive algorithm can be applied. Using a

gimbal or multiple cameras with active light sources can provide a

better field of view for out‐of‐sight marker detection. In addition,

proximity sensor arrays can be added to empower the robot with a

collision avoidance function. A strategy of detecting the tube inlets

from multiple camera positions can be used to mitigate the issue of

incorrect detection by the cameras due to environmental distur-

bance, e.g. light conditions (Figure 5c‐iii). (3) To lengthen the probe

delivery into a longer tube, a gear‐chain‐based delivery mechanism is

superior. (4) In addition, to make the whole system more compact and

easier for maintenance, a microcomputer with programmable I/O

circuitry can be tested to manage all subsystems. (5) To increase the

robustness of the trained CNN models, more and diversified data

from the tubes with various types of defects are desired.

5 | CONCLUSION

In this study, we demonstrate an autonomous robot for STHE

inspection. The robot effectively reduces human induced error in

instrument manipulation and data analysis. To the best of our

knowledge, this is the first autonomous robot that can operate ECT

instrument for STHE inspection. This demonstration offers a new

promise for improving power plant maintenance. In future, integra-

tion of different types of testing and analysis equipment would make

F IGURE 9 (a) A photograph showing that the robot is inserting ECT probe into a tube of interest. (b‐i) A representative tube with a wall‐loss
defect. (b‐ii) Snapshot displayed on the Reddy AC unit showing ECT spectra of the tube. (b‐iii) An ECT spectrum of the whole tube including the
defective area. The spectrum of the defective area was extracted as the input of the CNN model. Bottom panel shows the prediction output of
the CNN model. CNN, convolutional neural network; ECT, eddy current testing.
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the robot more powerful or multifunctional for performing different

tasks, which would require more sophisticated and task‐specific

mechanical systems, and accurate sensing and control systems.
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